ecuaciones de hamilton

De la entrada anterior podemos rescatar tres resultados importantes

H(qi,pi,t)=βˆ‘i=1nβˆ‚Lβˆ‚qΛ™iqΛ™iβˆ’L\mathcal{H}(q_i, p_i, t) = \sum_{i=1}^{n} \frac{\partial \mathcal{L}}{\partial \dot{q}_i} \dot{q}_i - \mathcal{L}
Pi=βˆ‚Lβˆ‚qΛ™iP_i = \frac{\partial \mathcal{L}}{\partial \dot{q}_i}
βˆ’βˆ‚Lβˆ‚t=dHdt-\frac{\partial \mathcal{L}}{\partial t} = \frac{d\mathcal{H}}{dt}

Ahora, lo primero que vamos a hacer es calcular a pata el diferencial de H\mathcal{H}.

dH=βˆ‚Hβˆ‚q1dq1+βˆ‚Hβˆ‚q2dq2+...+βˆ‚Hβˆ‚P1dP1+βˆ‚Hβˆ‚P2dP2+...+βˆ‚Hβˆ‚tdtd\mathcal{H} = \frac{\partial \mathcal{H}}{\partial q_1} dq_1 + \frac{\partial \mathcal{H}}{\partial q_2} dq_2 + ... + \frac{\partial \mathcal{H}}{\partial P_1} dP_1 + \frac{\partial \mathcal{H}}{\partial P_2} dP_2 + ... + \frac{\partial \mathcal{H}}{\partial t} dt =βˆ‘j=1n(βˆ‚Hβˆ‚qjdqj+βˆ‚Hβˆ‚PjdPj)+βˆ‚Hβˆ‚tdt= \sum_{j=1}^{n} \left( \frac{\partial \mathcal{H}}{\partial q_j} dq_j + \frac{\partial \mathcal{H}}{\partial P_j} dP_j \right) + \frac{\partial \mathcal{H}}{\partial t} dt

Ahora si diferenciamos la expresiΓ³n que ya conocemos de H\mathcal{H} tendrΓ­amos

H=βˆ‘j=1nPjqΛ™jβˆ’L(q,qΛ™,t)H = \sum_{j=1}^{n} P_j \dot{q}_j - L(q, \dot{q}, t) dH=βˆ‘j=1nβˆ‚(PjqΛ™j)βˆ‚PjdPj+βˆ‚(PjqΛ™j)βˆ‚qΛ™jdqΛ™jβˆ’dLd\mathcal{H} = \sum_{j=1}^{n} \frac{\partial (P_j \dot{q}_j)}{\partial P_j} dP_j + \frac{\partial (P_j \dot{q}_j)}{\partial \dot{q}_j} d\dot{q}_j - d\mathcal{L} =βˆ‘j=1n[qΛ™jdPj+PjdqΛ™j]βˆ’dL= \sum_{j=1}^{n} \left[ \dot{q}_j dP_j + P_j d\dot{q}_j \right] - d\mathcal{L} dL=βˆ‘j=1n[βˆ‚Lβˆ‚qjdqj+βˆ‚Lβˆ‚qΛ™jdqΛ™j]+βˆ‚Lβˆ‚tdtd\mathcal{L} = \sum_{j=1}^{n} \left[ \frac{\partial \mathcal{L}}{\partial q_j} dq_j + \frac{\partial \mathcal{L}}{\partial \dot{q}_j} d\dot{q}_j \right] + \frac{\partial \mathcal{L}}{\partial t} dt =βˆ‘j=1n[qΛ™jdPj+PjdqΛ™j]βˆ’[βˆ‘j=1n[βˆ‚Lβˆ‚qjdqj+βˆ‚Lβˆ‚qΛ™jdqΛ™j]+βˆ‚Lβˆ‚tdt]= \sum_{j=1}^{n} \left[ \dot{q}_j dP_j + P_j d\dot{q}_j \right] - \left[ \sum_{j=1}^{n} \left[ \frac{\partial \mathcal{L}}{\partial q_j} dq_j + \frac{\partial \mathcal{L}}{\partial \dot{q}_j} d\dot{q}_j \right] + \frac{\partial \mathcal{L}}{\partial t} dt \right] =βˆ‘j=1n[qΛ™jdPj+PjdqΛ™jβˆ’βˆ‚Lβˆ‚qjdqjβˆ’βˆ‚Lβˆ‚qΛ™jdqΛ™j]βˆ’βˆ‚Lβˆ‚tdt= \sum_{j=1}^{n} \left[ \dot{q}_j dP_j + P_j d\dot{q}_j - \frac{\partial \mathcal{L}}{\partial q_j} dq_j - \frac{\partial \mathcal{L}}{\partial \dot{q}_j} d\dot{q}_j \right] - \frac{\partial \mathcal{L}}{\partial t} dt

Recordamos que:

ddt(βˆ‚Lβˆ‚qΛ™j)=βˆ‚Lβˆ‚qj\frac{d}{dt} \left( \frac{\partial \mathcal{L}}{\partial \dot{q}_j} \right) = \frac{\partial \mathcal{L}}{\partial q_j} PΛ™j=βˆ‚Lβˆ‚qj\dot{P}_j = \frac{\partial \mathcal{L}}{\partial q_j} =βˆ‘j=1n[qΛ™jdPj+PjdqΛ™jβˆ’PΛ™jdqjβˆ’PjdqΛ™j]βˆ’βˆ‚Lβˆ‚tdt= \sum_{j=1}^{n} \left[ \dot{q}_j dP_j + P_j d\dot{q}_j - \dot{P}_j dq_j - P_j d\dot{q}_j \right] - \frac{\partial \mathcal{L}}{\partial t} dt dH=βˆ‘j=1n[qΛ™jdPjβˆ’PΛ™jdqj]βˆ’βˆ‚Lβˆ‚tdtd \mathcal{H}= \sum_{j=1}^{n} \left[ \dot{q}_j dP_j - \dot{P}_j dq_j \right] - \frac{\partial \mathcal{L}}{\partial t} dt

Si recordamos que:

dH=βˆ‘j=1n(βˆ‚Hβˆ‚qjdqj+βˆ‚Hβˆ‚PjdPj)+βˆ‚Hβˆ‚tdtd \mathcal{H}= \sum_{j=1}^{n} \left( \frac{\partial \mathcal{H}}{\partial q_j} dq_j + \frac{\partial \mathcal{H}}{\partial P_j} dP_j \right) + \frac{\partial \mathcal{H}}{\partial t} dt

entonces:

βˆ’βˆ‚Hβˆ‚qj=PΛ™j,βˆ‚Hβˆ‚Pj=qΛ™j-\frac{\partial \mathcal{H}}{\partial q_j} = \dot{P}_j, \quad \frac{\partial \mathcal{H}}{\partial P_j} = \dot{q}_j

pero entonces tambiΓ©n

βˆ‚Hβˆ‚t=βˆ’βˆ‚Lβˆ‚t \frac{\partial \mathcal{H}}{\partial t} = -\frac{\partial \mathcal{L}}{\partial t}

y en la entrada anterior habΓ­amos llegado a que

βˆ’βˆ‚Lβˆ‚t=dHdt-\frac{\partial \mathcal{L}}{\partial t} = \frac{d\mathcal{H}}{dt}

por lo tanto

βˆ‚Hβˆ‚t=dHdt. \frac{\partial \mathcal{H}}{\partial t} = \frac{d \mathcal{H}}{dt}.

Esta simple ecuaciΓ³n es una gran sentencia: si el Hamiltoniano H\mathcal{H} no tiene al tiempo t metido explΓ­citamente, entonces, su derivada total respecto al tiempo es CERO.

Lo divertido es que podemos ver lo anterior con una simple mirada a su estructura. Si la tt no figura explΓ­citamente, H es una constante del movimiento. No hay mΓ‘s que buscar.